Σας προσκαλούμε στη διάλεξη του κ. Γεώργιου Μπαρμπαλιά, Καθηγητή στη Κινεζική Ακαδημία Επιστημών, (http://www.barmpalias.net). Η διάλεξη θα πραγματοποιηθεί την Τρίτη 15 Ιουλίου 2024 & ώρα 11:00, στην Αίθουσα Σεμιμαρίων του Τομέα Μαθηματικών.
Title: Computable one-way functions on the reals
Abstract: A major open problem in computational complexity is the existence of a one-way function, namely a function from strings to strings which is computationally easy to compute but hard to invert. Levin (2023) formulated the notion of one-way functions from reals (infinite bit-sequences) to reals in terms of computability, and asked whether partial computable one-way functions exist. We give a strong positive answer using the hardness of the halting problem and exhibiting a total computable one-way function.
Σας προσκαλούμε στη διάλεξη του Αντώνη Ζητρίδη, University of Chicago, η οποία θα πραγματοποιηθεί την Τρίτη 25 Ιουνίου 2024 & ώρα 13:00, στην Αίθουσα Σεμιναρίων του Τομέα Μαθηματικών.
Τίτλος: From entropic propagation of chaos to concentration bounds for stochastic particle systems.
Περίληψη: We shall discuss about weakly interacting stochastic particle systems with possibly singular pairwise interactions. In this setting, we observe a connection between entropic propagation of chaos (proved by Jabin and Wang, 2018) and exponential concentration bounds for the empirical measure of the system. In particular, we will show how to establish a variational upper bound for the probability of a certain rare event, and then use this upper bound to show that ”controlled” entropic propagation of chaos implies an exponential concentration bound for the empirical measure.
Joint work with Joe Jackson.
Το πρόγραμμα του σεμιναρίου για το ακαδημαϊκό έτος 2023-24 βρίσκεται στη διεύθυνση:
Σας προσκαλούμε στην ομιλία της κ. Αλεξάνδρας Σταυριανίδη,Stanford University, η οποία θα πραγματοποιηθεί τη Δευτέρα, 17 Ιουνίου 2024 & ώρα 13:00, στην Αίθουσα Σεμιναρίων του Τομέα Μαθηματικών.
Τίτλος: The logarithmic correction for the fronts of a cascading family of Branching Brownian Motions
Περίληψη: In this talk, I will introduce the connection between some systems of Fisher-KPP type reaction-diffusion equations and a cascading family of Branching Brownian Motions. The location of the median of the rightmost particle of this particle system coincides with the location of the front of the equations, so the associated long time asymptotics can be studied from both a probability and a PDE point of view. I will present results on the long time behavior of the system and analyze interesting applications and probabilistic connections.
Το πρόγραμμα του σεμιναρίου για το ακαδημαϊκό έτος 2023-24 βρίσκεται στη διεύθυνση:
Σας προσκαλούμε στην ομιλία του κ. Jasper Rou (ΥΔ Delft University of Technology, http://www.jasperrou.nl/), η οποία θα πραγματοποιηθεί την Παρασκευή, 14 Ιουνίου 2024 & ώρα 13:00, στην αίθουσα Σεμιναρίων του Τομέα Μαθηματικών.
Title: Convergence of time-stepping Deep Gradient Flow Methods
Abstract: In this research, we consider the convergence of neural network algorithms for partial differential equations (PDE). More specifically, we consider a Time-stepping Deep Gradient Flow method, where the PDE is solved by discretizing it in time and writing it as the solution of minimizing a variational problem. A neural network approximation is then trained to solve this minimization using stochastic gradient descent. This method reduces the training time compared to for instance the Deep Galerkin Method. We prove two things.
First, that there exists a neural network converging to the solution of the PDE. This proof consists of three parts: 1) convergence of the time stepping; 2) equivalence of the solution of the discretized PDE and the minimizer of the variational formulation and 3) the approximation of the minimizer by a neural network by using a version of the universal approximation theorem. Second, we prove that when training the network we converge to the correct solution. This proof consists of two parts: 1) as the number of neurons goes to infinity we converge to some gradient flow and 2) as the training time goes to infinity this gradient flow converges to the solution.
Σας προσκαλούμε στη διάλεξη του κ. Μιχάλη Σαράντη, Carnegie Mellon University, η οποία θα πραγματοποιηθεί την Τετάρτη 12 Ιουνίου 2024 & ώρα 14:00, στην Αίθουσα Σεμιναρίων του Τομέα Μαθηματικών.
Τίτλος : “On the zeroes of hypergraph independence polynomials”
Abstract : “We prove that the multivariate independence polynomial of any hypergraph of maximum degree Δ has no zeroes on the complex polydisc of radius ~1/(eΔ), centered at the origin. Up to logarithmic factors in Δ, the result is optimal, even for graphs with all edge sizes greater than 2. As a corollary, we get an FPTAS for approximating the independence polynomial in this region of the complex plane. We furthermore prove the corresponding radius for the k-uniform linear hypertrees is Ω(Δ^{-1/(k-1)}), a significant discrepancy from the graph case.
Joint work with David Galvin, Gwen McKinley, Will Perkins and Prasad Tetali.”