Διάλεξη Αντώνη Ζητρίδη_Τρίτη 25/6/2024_Σεμινάριο Ανάλυσης

Σας προσκαλούμε στη διάλεξη του Αντώνη Ζητρίδη,  University of Chicago, η οποία θα πραγματοποιηθεί  την Τρίτη 25 Ιουνίου 2024 & ώρα 13:00, στην Αίθουσα Σεμιναρίων του Τομέα Μαθηματικών.

Τίτλος: From entropic propagation of chaos to concentration bounds for stochastic particle systems.

Περίληψη: We shall discuss about weakly interacting stochastic particle systems with possibly singular pairwise interactions. In this setting, we observe a connection between entropic propagation of chaos (proved by Jabin and Wang, 2018) and exponential concentration bounds for the empirical measure of the system. In particular, we will show how to establish a variational upper bound for the probability of a certain rare event, and then use this upper bound to show that ”controlled” entropic propagation of chaos implies an exponential concentration bound for the empirical measure.

Joint work with Joe Jackson.

Το πρόγραμμα του σεμιναρίου για το ακαδημαϊκό έτος 2023-24 βρίσκεται στη διεύθυνση:

https://sites.google.com/view/analysis-seminar-samps/

H Επιτροπή του Σεμιναρίου Ανάλυσης

Ομιλία Αλεξάνδρας Σταυριανίδη, Δευτέρα, 17 Ιουνίου 2024, Σεμινάριο Ανάλυσης

Σας προσκαλούμε στην ομιλία της κ. Αλεξάνδρας Σταυριανίδη,Stanford University, η οποία θα πραγματοποιηθεί τη Δευτέρα, 17 Ιουνίου 2024 & ώρα 13:00, στην Αίθουσα Σεμιναρίων του Τομέα Μαθηματικών.

Τίτλος: The logarithmic correction for the fronts of a cascading family of Branching Brownian Motions

Περίληψη: In this talk, I will introduce the connection between some systems of Fisher-KPP type reaction-diffusion equations and a cascading family of Branching Brownian Motions. The location of the median of the rightmost particle of this particle system coincides with the location of the front of the equations, so the associated long time asymptotics can be studied from both a probability and a PDE point of view. I will present results on the long time behavior of the system and analyze interesting applications and probabilistic connections.

Το πρόγραμμα του σεμιναρίου για το ακαδημαϊκό έτος 2023-24 βρίσκεται στη διεύθυνση:

https://sites.google.com/view/analysis-seminar-samps/

Από την Επιτροπή του Σεμιναρίου Ανάλυσης

Ομιλία Jasper Rou, Παρασκευή 14/6/2024_ Σεμινάριο Τομέα Μαθηματικών

Σας προσκαλούμε στην ομιλία του κ. Jasper Rou (ΥΔ Delft University of Technology, http://www.jasperrou.nl/), η οποία θα πραγματοποιηθεί  την Παρασκευή,  14 Ιουνίου 2024 & ώρα 13:00, στην αίθουσα Σεμιναρίων του Τομέα Μαθηματικών.

Title: Convergence of time-stepping Deep Gradient Flow Methods

Abstract: In this research, we consider the convergence of neural network algorithms for partial differential equations (PDE). More specifically, we consider a Time-stepping Deep Gradient Flow method, where the PDE is solved by discretizing it in time and writing it as the solution of minimizing a variational problem. A neural network approximation is then trained to solve this minimization using stochastic gradient descent. This method reduces the training time compared to for instance the Deep Galerkin Method. We prove two things.

First, that there exists a neural network converging to the solution of the PDE. This proof consists of three parts: 1) convergence of the time stepping; 2) equivalence of the solution of the discretized PDE and the minimizer of the variational formulation and 3) the approximation of the minimizer by a neural network by using a version of the universal approximation theorem. Second, we prove that when training the network we converge to the correct solution. This proof consists of two parts: 1) as the number of neurons goes to infinity we converge to some gradient flow and 2) as the training time goes to infinity this gradient flow converges to the solution.

Από την Επιτροπή  Σεμιναρίου του Τομέα Μαθηματικών

Ομιλία Μιχάλη Σαράντη, Τετάρτη 12/6/2024, Σεμινάριο Ανάλυσης.

Σας προσκαλούμε στη διάλεξη του κ. Μιχάλη Σαράντη, Carnegie Mellon University, η οποία θα πραγματοποιηθεί την Τετάρτη 12 Ιουνίου 2024 & ώρα 14:00, στην Αίθουσα Σεμιναρίων του Τομέα Μαθηματικών.

Τίτλος : “On the zeroes of hypergraph independence polynomials”

Abstract : “We prove that the multivariate independence polynomial of any hypergraph of maximum degree Δ has no zeroes on the complex polydisc of radius ~1/(eΔ), centered at the origin. Up to logarithmic factors in Δ, the result is optimal, even for graphs with all edge sizes greater than 2. As a corollary, we get an FPTAS for approximating the independence polynomial in this region of the complex plane. We furthermore prove the corresponding radius for the k-uniform linear hypertrees is Ω(Δ^{-1/(k-1)}), a significant discrepancy from the graph case.

Joint work with David Galvin, Gwen McKinley, Will Perkins and Prasad Tetali.”

Το πρόγραμμα του σεμιναρίου για το ακαδημαϊκό έτος 2023-24 βρίσκεται στη διεύθυνση: https://sites.google.com/view/analysis-seminar-samps/

Από την Επιτροπή του Σεμιναρίου Ανάλυσης

Ομιλία Κωνσταντίνου Καββαδία_ Δευτέρα 20/5/2024_ Σεμινάριο Ανάλυσης

Σας προσκαλούμε στη διαλέξη του κ. Κων/νου Καββαδία, Massachusetts Institute of Technology, η οποία θα πραγματοπoιηθεί τη Δευτέρα 20/5/2024, στην Αίθουσα Γ31, Τμήμα Μαθηματικών, ΕΚΠΑ & ώρα 15:30.

Τίτλος: Introduction to Schramm-Loewner Evolution (SLE)

Περίληψη: The Schramm-Loewner Evolution (SLE_κ) is a one parameter family (κ>0) of curves which connect two boundary points of a simply connected domain. It was introduced by Schramm in 1999 as a candidate to describe the scaling limit of the interfaces that arise in discrete models at criticality
from statistical mechanics on planar lattices, such as the loop erased random walk and the percolation model. In my talk, I will discuss about the intuition behind the definition of SLE_κ and I will introduce some of its basic properties obtained during the last twenty years. I will also discuss about some recent results obtained in a series of recent research works.
Finally, if time permits, I will discuss about some ongoing research results.

Το πρόγραμμα του σεμιναρίου για το ακαδημαϊκό έτος 2023-24 βρίσκεται στη διεύθυνση:

https://sites.google.com/view/analysis-seminar-samps/

Από την Επιτροπή του Σεμιναρίου Ανάλυσης

Ομιλία Μαρίνας Ηλιοπούλου_Δευτέρα 13/5/2024_Σεμινάριο Ανάλυσης

Σας προσκαλούμε στη διάλεξη της Μαρίνας Ηλιοπούλου, ΕΚΠΑ , η οποία θα πραγματοποιηθεί τη Δευτέρα 13/5/2024 & ώρα 15:30, στην Αίθουσα Σεμιναρίων του Τομέα Μαθηματικών.

Τίτλος: On integer distance sets

Περίληψη: An integer distance set is a set in the Euclidean plane with the property that all pairwise distances between its points are integers. In this talk we will show that any integer distance set contains all but very few of its points on a single line or circle. This helps us address some questions by Erdős. In particular, we deduce that integer distance sets in general position (no 3 points on a line, no 4 points on a circle) are very sparse, and we derive a near-optimal lower bound on the diameter of any non-collinear integer distance set of a given size. Our proof uses existing refinements of the Bombieri-Pila determinant method. This is joint work with Rachel Greenfeld and Sarah Peluse.

Σχετικός σύνδεσμος:
https://www.quantamagazine.org/merging-fields-mathematicians-go-the-distance-on-old-problem-20240401/


Το πρόγραμμα του σεμιναρίου για το ακαδημαϊκό έτος 2023-24 βρίσκεται στη  διεύθυνση:

https://sites.google.com/view/analysis-seminar-samps/

Από την Επιτροπή του Σεμιναρίου Ανάλυσης

Ομιλία Γεωργίου Κοτσόβολη, Princeton Un._ Σεμινάριο Ανάλυσης_Δευτέρα 22/4/2024

Σας προσκαλούμε στη διάλεξη του Γεωργίου Κοτσόβολη, Princeton University, η οποία θα πραγματοποιηθεί τη Δευτέρα 22 Απριλίου 2024 & ώρα 16:00.

Τίτλος: The infima of binary forms

Περίληψη: For a binary form P(x,y) of non-zero discriminant and for a two dimensional lattice Λ  of volume 1, what is the infimum of the values P attains on the non-trivial vectors of Λ? The spectrum of a binary form P is defined to be the set of these infima as Λ ranges over all unimodular lattices. Understanding this object is a fundamental project in the geometry
of numbers and even though the case of n=2 is well understood, much less is known for higher degrees. In 1940, Mordell conjectured that for a binary cubic form P,  the spectrum of P has a gap after its maximal value, a statement disproved later by Davenport, who constructed a sequence of infima
converging to the top. As for n greater than 3, there has been, to our knowledge, no progress to understanding these spectra. In this talk, we show that for any binary form P, the spectrum of P is an interval, answering the problem for all degrees n.

Η επιτροπή του Σεμιναρίου Ανάλυσης

Το πρόγραμμα του σεμιναρίου για το ακαδημαϊκό έτος 2023-24 βρίσκεται στη
διεύθυνση:

https://sites.google.com/view/analysis-seminar-samps/

Ομιλία Ανδρέα Βικελή, Un. of Vienna_ Δευτέρα 8/4/2024_ Σεμινάριο Ανάλυσης

Η ομιλία θα πραγματοποιηθεί τη Δευτέρα, 8 Απριλίου, 2024 & ώρα: 15:30, στην Αίθουσα Σεμιναρίων του Τομέα Μαθηματικών ΣΕΜΦΕ, κτ. Ε΄, 2ος όροφος.

 

Ομιλητής: Ανδρέας Βικελής, University of Vienna

 

Τίτλος: Λύσεις μέτρα για το σύστημα της ελαστοπλαστικότητας σε συνθήκες μεγάλων παραμορφώσεων

 

Περίληψη: Μια σειρά από φαινόμενα που συναντάμε στη φύση και πιο συγκεκριμένα στη μηχανική των υλικών, περιγράφονται μέσα από διαφορικές σχέσεις που συχνά είναι πολύ δύσκολο να μελετηθούν λόγω της αυξημένης μαθηματικής τους πολυπλοκότητας. Στη συγκεκριμένη ομιλία θα εστιάσουμε στα εξελικτικά εκείνα φαινόμενα που περιγράφονται από ανεξάρτητα-ρυθμού συστήματα, δηλαδή για παράδειγμα συστήματα που δεν εξαρτώνται από το πόσο γρήγορα ή για πόση διάρκεια εφαρμόζονται σε αυτά εξωτερικές δυνάμεις.

Εισάγοντας τις βασικές αρχές της θεωρίας αυτών των συστημάτων και πιο συγκεκριμένα την έννοια των ενεργειακών λύσεων, θα μελετήσουμε το πρόβλημα της εξελικτικής ελαστοπλαστικότητας σε συνθήκες μεγάλων παραμορφώσεων, ένα πρόβλημα που παραμένει μέχρι και σήμερα ανεξερεύνητο.

Σε αυτήν την κατεύθυνση, θα παρουσιάσω ένα αποτέλεσμα ύπαρξης λύσεων-μέτρων του quasi-στατικού προβλήματος που διατηρούν τις φυσικές ιδιότητες του συστήματος, δηλαδή είναι ευσταθείς και διατηρούν την ενέργεια. Τόσο η γενικότερη θεωρία των quasi-στατικών εξελικτικών προβλημάτων, όσο και η δική μας συνεισφορά στο πεδίο αυτό, βασίζεται σε τεχνικές από τη θεωρία μεταβολών. Η δουλειά αυτή είναι σε συνεργασία με τον Ulisse Stefanelli.

 

Το πρόγραμμα του σεμιναρίου για το ακαδημαϊκό έτος 2023-24 βρίσκεται στη διεύθυνση:

 

https://sites.google.com/view/analysis-seminar-samps/

 

Από την Επιτροπή του Σεμιναρίου Ανάλυσης

Ομιλία Αλεξάνδρα Τζέλλα, University of Birmingham, Δευτέρα 1/4/2024_Σεμινάριο Ανάλυσης

Σας ενημερώνουμε ότι τη Δευτέρα 1/4/2024 & ώρα 15:30, στην Αίθουσα Σεμιναρίων του Τομέα Μαθηματικών, θα πραγματοποιηθεί η ομιλία της Αλεξάνδρας Τζέλλα, University of Birmingham, στο πλαίσιο των διαλέξεων του Σεμιναρίου Ανάλυσης.

Τίτλος : “Diffusion in arrays of obstacles: beyond homogenisation”

Abstract : “We examine the diffusion of a chemical or heat released in a homogeneous medium interrupted by an infinite number of impermeable obstacles arranged in a periodic lattice. We extend classical results due to Maxwell, Rayleigh and Keller by applying ideas of large-deviation theory to describe the concentration or temperature distribution at large distances
from the point of release. We use matched asymptotics to obtain explicit results in the case of nearly touching obstacles, when the transport is strongly inhibited. The technique developed can be applied to complex systems including porous media and composite materials. This is based on joint work with Y. Farah, D. Loghin and J. Vanneste.”

Το πρόγραμμα του σεμιναρίου για το ακαδημαϊκό έτος 2023-24 βρίσκεται στη διεύθυνση:

 https://sites.google.com/view/analysis-seminar-samps/

   Από την Επιτροπή του Σεμιναρίου Ανάλυσης